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We often need to infer unknown properties of objects from observable ones, just like detectives must

infer guilt from observable clues and behavior. But how do inferential processes change with age? We

examined young and older adults’ reliance on rule-based and similarity-based processes in an inference

task that can be considered either a categorization or a multiple-cue judgment task, depending on the

nature of the criterion (binary vs. continuous). Both older and young adults relied on rule-based processes

in the multiple-cue judgment task. In the categorization task, however, the majority of older adults relied

on rule-based processes while young adults preferred similarity-based processes. Moreover, older adults

who relied on rule-based processes performed poorly compared with young adults who relied on the same

process, suggesting that aging is associated with deficits in applying rule-based processes.
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Agatha Christie’s fictional characters, Hercule Poirot and Jane

Marple, solved mysteries in different ways. Poirot followed de-

ductive logic, methodically inferring from the available cues the

culprits of various crimes (Christie, 1934). Miss Marple would

instead gauge the similarity between current suspects to numerous

acquaintances from her hometown, St. Mary Mead, to uncover

motivations and ultimately determine the probability that someone

committed a crime (Christie, 1957). These two investigative meth-

ods have clear resemblance to psychological theories that postulate

rule-based inference processes involving cue integration (e.g.,

Einhorn, Kleinmuntz, & Kleinmuntz, 1979), similarity-based pro-

cesses that rely on exemplar retrieval from memory (e.g., Medin &

Schaffer, 1978; Nosofsky & Johansen, 2000), or both (e.g., Erick-

son & Kruschke, 1998). But which of these characters and theories

best portrays older adults’ inferences? Inference problems are

ubiquitous in everyday life, and so it is crucial to evaluate whether

age-related cognitive decline can limit older adults’ abilities in this

regard (Mata, Schooler, & Rieskamp, 2007; Thornton & Dumke,

2005). In the current article, we investigate adult age differences in

the reliance on rule-based versus similarity-based processes in

specific inference problems, namely, in categorization and

multiple-cue judgment tasks.

Categorization and multiple-cue judgment problems represent

structurally similar and common inference problems that differ in

one respect—the type of criterion to be judged. Teachers can be

asked to estimate whether a particular student will score above or

below average on a test or, instead, to estimate the student’s

specific score. Likewise, a doctor may be asked to make a judg-

ment about whether a patient will live or die or, instead, assign a

specific probability of his or her recovery. Both problems involve

integrating known characteristics (cues) of an object to infer some

other unknown property, either a category (categorization) or a

continuous criterion (multiple-cue judgment).

Juslin, Olsson, and Olsson (2003) demonstrated that the type of

problem—categorization or multiple-cue judgment—can to a large

extent determine the reliance on rule-based versus similarity-based

processes in young adults. Specifically, when a task consisted of

estimating a binary criterion (categorization), young adults primarily

relied on exemplar memory, but if the criterion to be estimated was

continuous (multiple-cue judgment), participants primarily relied on

rule-based processes. Juslin et al. interpreted these results as showing

that explicit representations of cue–criterion relations are more likely

to be extracted when plenty of information is present and linear

cue-criterion relations can be extracted, as in the case of the contin-

uous feedback available in multiple-cue judgment tasks. In turn,

people often default to similarity-based processes when information

about the cue-criterion relations is nonlinear or scarce, such as in

categorization tasks. A number of studies have since found patterns of

results congruent with this view (e.g., von Helversen, Mata, & Olsson,

2010; Juslin, Karlsson, & Olsson, 2008; Karlsson, Juslin, & Olsson,

2007).
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The ability to rely on similarity-based versus rule-based pro-

cesses seems to change across the life span: children between the

ages of 9 and 11 years appear not to select between similarity-

based and rule-based processes as a function of the type of prob-

lem (von Helversen, et al., 2010). Von Helversen et al. demon-

strated that young adults relied on rule–based processes in a

multiple-cue judgment task but selected more often a similarity-

based process in the categorization task. In contrast, the majority

of children relied on similarity-based exemplar processes regard-

less of the type of problem. What cognitive processes do older

adults favor when making categorization and multiple-cue judg-

ments?

There are two possible—but not necessarily mutually exclu-

sive—scenarios concerning how aging may impact older adults’

preferences for rule-based versus similarity-based processes. First,

given von Helversen et al.’s (2010) results suggesting that exem-

plar memory processes are less cognitively demanding, one could

expect older adults to show an increased reliance on similarity-

based processes due to reduced cognitive capacity. To the extent

that exemplar-based categorization makes use of implicit or auto-

matic processes (Hahn & Chater, 1998; Koenig et al. 2005; but see

Juslin et al., 2008) that are less affected by age-related cognitive

decline compared with explicit memory processes such as recog-

nition or recall (Fleischman, Wilson, Gabrieli, Bienias, & Bennett,

2004; D. V. Howard, Howard, Dennis, LaVine, & Valentino,

2008; Jennings & Jacoby, 1993; but see also J. H. Howard,

Howard, Dennis, & Kelly, 2008), older adults could be well

advised to rely on the former. In this case, age-related cognitive

limitations, such as deficits in processing speed or working mem-

ory, which may negatively affect execution of rule-based strate-

gies, should be related to an increased selection of similarity-based

over rule-based inference processes.

Second, age-related cognitive decline may lead to increased

reliance on rule-based processes. Filoteo and Maddox (2004) used

formal modeling to show that older adults may rely more often on

simple rules in a perceptual categorization task and that smaller

age differences in performance are observed for rule-based com-

pared with implicit similarity-based information-integration pro-

cesses (see Ashby, Noble, Filoteo, Waldron, & Ell, 2003, for a

similar result). Filoteo and Maddox speculated that older adults

may rely more on rule-based processes due to difficulties in

memorizing visual patterns. According to this view, older adults

may prefer to rely on rule-based strategies to circumvent real or

perceived memory limitations. There is indeed some evidence that

older adults may generally prefer cognitive strategies that do not

involve high memory demands (Touron & Hertzog, 2004, 2009).

Older adults’ preference for rule-based strategies does not, how-

ever, imply perfect inference performance. For example, one study

on aging and category learning suggests that older adults perform

similarly to young adults when category membership can be easily

verbalized using a simple rule, but older adults perform consider-

ably more poorly when more complex rules need to be carried out

to arrive at a judgment (Racine, Barch, Braver, & Noelle, 2006).

Research on aging and probabilistic cue learning also suggests that

older adults have difficulties learning the value of cues when many

competing cues are present (e.g., Chasseigne et al., 2004). Conse-

quently, even if older adults tend to rely on rule-based processes,

they may have difficulties determining the value of cues from

experience. This view resonates well with the findings that smaller

working memory capacity is associated with learning impairments

in category learning (DeCaro, Carlson, Thomas, & Beilock, 2009)

and that age-related cognitive decline may lead to learning diffi-

culties and execution of complex inference strategies (Mata et al.,

2007; Mata, von Helversen, & Rieskamp, 2010).

The Current Study

In the current study, we examined young and older adults’

inferences in a task that can be considered either a categorization

task or a multiple-cue judgment task depending on the nature of

the criterion (binary vs. continuous). In this manner, we hoped to

contrast the two views described, which suggest age-related dif-

ferences in the preference for rule- versus similarity-based pro-

cesses. In addition, we hoped to contribute to understanding the

reasons underlying potential age differences in preferences for

particular cognitive processes by assessing young and older adults’

cognitive abilities and memory for task materials. To the extent

that similarity-based processes are simpler or less affected by

age-related cognitive decline (e.g. D. V. Howard et al. 2008; J. H.

Howard et al., 2008), individual differences in cognitive abilities

could be related to older adults’ preferred selection of similarity-

over rule-based inference processes. However, to the extent that

similarity-based processes rely on memory processes that decline

with age, individual differences in recognition performance could

prove a predictor concerning older adults’ preference for rule-

based processes as suggested by Filoteo and Maddox (2004). We

examined these possibilities by assessing participants’ fluid cog-

nitive abilities with two standardized cognitive tests as well as

their memory for task stimuli by examining discrimination of

trained exemplars and lures in a recognition task. In this manner,

we hoped to assess whether participants’ memory and other abil-

ities played a role in their choice of inference processes.

Method

Participants

Forty-eight young adults (50% female) and 50 older adults (50%

female) participated in the study (see Table 1 for participant

characteristics). Most young adults were university students, and

older participants were community-dwelling adults recruited

through newspaper advertisements. The majority of participants

were White. Participation took an average of 1.5 hr. Participants

received a performance-contingent payment (M ! 15 euros, 5

euros as a show-up fee).

Design and Material

The design included two between-subjects factors, task (binary

vs. continuous criterion) and age group (young vs. older). We

modeled our task on von Helversen et al. (2010; for similar tasks

see also Juslin et al., 2003, 2008; Karlsson et al., 2007). The

participants’ goal was to learn how well fictitious cartoon charac-

ters performed in a game in which each needed to catch as many

“golbis” as possible. In the binary task, participants needed to

classify each character as a successful or an unsuccessful hunter. In

the continuous task, they needed to estimate how many golbis a

character had caught.
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The task consisted of a rather strict training phase and a test

phase. In the training phase, a training set consisting of 10 of the

16 cartoon characters was repeatedly presented (see Table 2). The

rationale for not including all items in the training set is that when

all items are learned during the training phase, the cue abstraction

and similarity-based models are indistinguishable (see Juslin et al.,

2003, for a full rationale for excluding items from the training set).

Excluding items from the training set ensures that the cue abstrac-

tion and exemplar models can in principle make different predic-

tions for new test items: The effects of similarity can best be

observed when judgments of new items are biased by the occur-

rence of similar items in memory. The characters used in the

training set were selected so as to generate differences between the

predictions of the exemplar and cue abstraction model for the new

test items (see Appendix A for details). In the test phase, all 16

characters were presented four times, thus amounting to a total of

64 judgments.

The characters varied on four cues (hair, nose, ears, and belly),

which could be used to predict how well they performed in the

game. Each cue had one of two possible features, for example, the

belly was either green or blue, and the hair had spikes or dread

locks. The number of golbis a character caught varied between 10

and 20 and was determined as a linear function of the cues:

C ! 10 " 4c1 " 3c2 " 2c3 " 1c4 (1)

where C is the criterion in the continuous task and c1 through c4

are the cue values, which could be either 1 or 0 (see Table 2).

Equation 1 represents a linear function of the sort used in previous

studies on estimation and categorization processes with similar

experimental designs to those used here (e.g., von Helversen et al.,

Table 1

Participant Characteristics

Variable

Young adults
(N ! 48)

Older adults
(N ! 50)

t pM SD M SD

Age 24.5 2.6 68.3 4.2
Education (years)a 16.4 2.9 16.1 5.1 0.45 .65
Vocabularyb 30.8 5.6 33.7 2.2 3.44 .001
Processing speeda 63.8 13.1 43.9 10.8 8.22 ".001
CRTb 1.83 1.11 0.80 0.95 4.93 ".001
Recognition (d#) 0.90 0.70 .46 0.66 3.17 .002
Recognition ($) .66 .16 .91 .50 3.31 .001

Note. Vocabulary ! Spot-a-Word (score range 0–35; Lehrl, 1999); processing speed ! Digit–Symbol
Substitution (score range 0–93; Wechsler, 1981); CRT ! Cognitive Reflection Test (score range 1–3;Frederick,
2005).
a df ! 96. b df ! 95.

Table 2

Task Structure: Cue Values for Training and Test Characters

Cue 1 Cue 2 Cue 3 Cue 4

Criterion

Training/testContinuous Binary

0 0 0 0 10 0 Test
0 0 0 1 11 0 Training
0 0 1 0 12 0 Training
0 0 1 1 13 0 Training
0 1 0 0 13 0 Training
0 1 0 1 14 0 Training
0 1 1 0 15 .5 Test
0 1 1 1 16 1 Training
1 0 0 0 14 0 Training
1 0 0 1 15 .5 Test
1 0 1 0 16 1 Training
1 0 1 1 17 1 Training
1 1 0 0 17 1 Test
1 1 0 1 18 1 Test
1 1 1 0 19 1 Test
1 1 1 1 20 1 Training

Note. Training characters appeared during training and test. Test characters appeared only during test. Objects
with a continuous criterion ! 15 have probability of .5 of being classified into the successful or unsuccessful
group.
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2010; Juslin et al., 2003). In the binary task, each character was

categorized as successful or unsuccessful on the basis of the

continuous criterion; characters with criterion values above 15

were classified as successful and those with criterion values below

15 were classified as unsuccessful. Please note that Equation 1

implies that some items have similar continuous criterion values

despite having different cue profiles (see Table 2). The assignment

of cue weights to the four pictorial cues (hair, nose, ears, and

belly), as well of the cue values (positive vs. negative) to the

features (spiky hair vs. dread locks), were randomly determined

and varied across participants. For example, while for one partic-

ipant, hair could be the most important cue (4), followed by nose

(3), ears (2), and belly (1), another participant could experience a

different ranking: belly (4), ears (3), nose (2), and hair (1). Also,

the first participant may have learned that a spiky hair, relative to

dread locks, was associated with more golbis being caught, while

the opposite was true for another participant.

To facilitate learning for older adults who as a group seem to

have difficulties in learning from probabilistic feedback (e.g., Mata

et al., 2010), we excluded items that could not be deterministically

classified (criterion ! 15) from the training set (see Table 2). In

addition, we wanted to ensure that young adults would not over-

learn the training stimuli relative to older adults whom we ex-

pected would require more time to learn the training stimuli.

Consequently, training was terminated after the eighth block if a

rather strict accuracy criterion was reached. The accuracy criterion

was reached if the root-mean-square deviation (RMSD) between

participants’ responses and the criterion values in one block sank

below 0.5 in the binary task (corresponding to a correct classifi-

cation of eight out of 10) and below 1.5 in the continuous task. If

the accuracy criterion was not met in Training Blocks 8–16,

training terminated after the 16th block (which amounted to about

1 hr of training in the continuous condition, which we had deter-

mined from previous testing should be the upper time limit to

ensure participants’ remained engaged in the task).

Regarding test performance, participants’ judgments for testing

items in the two task conditions (binary vs. continuous) were

evaluated in respect to the criterion given by Equation 1. Note that

while the values used were arbitrarily defined because they corre-

spond to an artificial task structure, the use of Equation 1 allowed

us to assess accuracy at training by setting a criterion for novel

stimuli that followed the same structure as that experienced by

participants during training. Finally, payment was performance

dependent: In the binary task, participants received 10 points for a

correct answer and 0 points for an incorrect answer; In the con-

tinuous task, participants received 10 points for a correct answer,

5 points if their answer deviated by 1, and 0 points if their answer

deviated by more than 1. At the end of the experiment, points were

converted into euro with an exchange rate of 1 euro for every 100

points.

Procedure

The study began with the extensive training phase consisting of

between eight and 16 blocks. In each block, the training characters

were presented in random order. In each trial of the training phase,

participants were asked to judge the performance of a training

character. After giving their response, they received feedback

about their performance, the correct criterion value, and the points

they earned. During the test phase, participants were asked to make

a categorization or give a continuous estimate regarding each

character but did not receive feedback. They were also asked to

indicate if they recognized the character from the training set or

not. Afterwards, participants completed processing speed, cogni-

tive reflection, and vocabulary measures (see Table 1) and a

number of additional measures that are not the focus of this article.

The cognitive reflection test is a three-item measure (e.g. “A bat

and a ball cost $1.10 in total; the bat costs $1.00 more than the ball;

how much does the ball cost?”) and is thought to measure one’s

ability to engage in effortful inference processes and avoid judg-

ment biases (Frederick, 2005; Oechssler, Roider, & Schmitz,

2009).

Results

We first provide an overview of participants’ training and test

performance. We then provide an account of the cognitive pro-

cesses underlying categorization and estimation judgments of

young and older adults. Finally, we report participants’ memory

for task materials and cognitive abilities and relate these to choice

of cognitive process in young and older adults.

Training and Test Performance

Table 3 reports performance in training and test by task and age

group as the RMSD between participants’ responses to an item and

the item’s criterion. RMSD is a common measure of judgment

accuracy and model fit (see later section) in estimation and cate-

gorization tasks (von Helversen et al., 2010; Juslin et al., 2003;

Karlsson et al., 2007). In the continuous condition, the RMSD

preserves the scale used (from 10 to 20) such that values can be

interpreted as a measure of average deviation from the actual

criterion values. To facilitate interpretation of RMSD in the binary

criterion, we provide the following guidelines: in the training

Table 3

Performance (Root-Mean-Square Deviation) in Training and Test by Age Group and Task Condition

Performance

Young adults Older adults

Binary (n ! 23) Continuous (n ! 25) Binary (n ! 25) Continuous (n ! 25)

M SD M SD M SD M SD

Training (last block) 0.24 0.22 1.45 0.73 0.49 0.21 2.50 1.06
Test 0.36 0.10 1.65 0.63 0.47 0.10 2.35 0.46
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phase, a correct classification of nine out of 10, eight out of 10, and

seven out of 10 correspond to a RMSD of .32, .45, and .55,

respectively; in the test phase, a correct classification of 15 out of

16, 14 out of 16, and 13 out of 16 correspond to a RMSD of .25,

.35, and .43, respectively. Please note that due to the different

nature of the criterion in the two task conditions (continuous: from

10 to 20 vs. binary: 0 or 1), it is not possible to meaningfully

compare RMSD between the two conditions. For this reason, we

report separate analyses for the continuous and binary conditions

whenever using RMSD.

We conducted analyses of variance (ANOVAs) with judgment

accuracy (RMSD) in the final training block as the dependent

variable and age group as the independent variable. We found

effects of age group in both the continuous, F(1, 48) ! 16.64, p "

.001, %p
2 ! .26, and binary tasks, F(1, 46) ! 16.85, p " .001, %p

2 !

.27. Because one cannot use RMSD to compare training perfor-

mance in the two task conditions, we analyzed the frequency with

which participants reached the accuracy criterion during training.

In the continuous condition, significantly more young adults (21

out of 25) than older adults (eight out of 25) reached the learning

criterion, &2(1) ! 11.82, p " .001. In the binary condition, all

young adults (23) and two thirds of older adults (17 out of 25)

reached the criterion, &2(1) ! 6.68, p " .01. Moreover, the results

suggest that while young adults were equally likely to reach the

learning criterion in the two task conditions (21 vs. 23), &2(1) !

2.91, p ! .14, older adults were less likely to reach criterion in the

continuous relative to the binary condition (eight vs. 17), &2(1) !

5.12, p ! .02. Overall, these results suggest that older adults had

more learning difficulties than did young adults and that older

adults had more learning difficulties in the continuous than in the

binary task condition.

Concerning test performance, we assessed age differences in

judgment at test by conducting ANOVAs with judgment accuracy

in the test phase (RMSD) as the dependent variable and age group

as the independent variable separately for the continuous and

binary conditions. In addition, we conducted these analyses while

controlling for training performance by adding performance in the

last training block as a covariate in the ANOVA with the goal of

assessing whether age differences in test performance can be

explained by individual differences in learning abilities. In the

continuous condition, we found a significant effect of age group,

F(1, 48) ! 19.55, p " .001, %p
2 ! .29. This effect was reduced but

remained significant when controlling for accuracy in the last

training block, F(1, 47) ! 4.18, p ! .05, %p
2 ! .08. In the binary

condition, we also found a significant effect of age group, F(1,

46) ! 14.86, p " .001, %p
2 ! .24, but this effect was no longer

significant when controlling for accuracy in the last training block,

F(1, 45) ! 1.83, p ! .18, %p
2 ! .04. Overall, the results suggest

that older adults had significant difficulties making categorization

and estimation judgments compared with young adults. However,

age differences in performance at test seem partly due to differ-

ences in training performance. In the following, we turn to iden-

tifying the cognitive processes underlying young and older adults’

judgments.

Formal Modeling of Cognitive Processes

Our goal was to test the hypothesis that young and older adults

differ in their preferences for different inference strategies. Con-

sequently, we first used formal models to identify the processes

underlying participants’ judgments and then classified participants

so as to be able to compare young and older adults’ preferences for

specific cognitive processes.

Model fits. We fitted an exemplar model and a cue abstrac-

tion model to the responses of each individual participant; these

models have been shown to capture well participants’ judgments in

estimation and categorization tasks (e.g., von Helversen et al.,

2010; Juslin et al., 2003; Karlsson et al., 2007; see Appendix A for

mathematical formulations of the models). We conducted a leave-

one-out cross validation procedure and relied on the RMSD be-

tween the model prediction and the participants’ response as a

goodness-of-fit criterion. Specifically, we estimated the models’

free parameters for each individual participant by fitting the mod-

els to 15 items of the test set and then predicting the response for

the 16th object on the basis of the estimated parameter values. This

process was repeated for all objects. The goodness of fit was

determined as the RMSD between the 16 predicted model re-

sponses and the participant’s responses (averaged across the re-

sponses to the four presentations of each test object). We estimated

four free parameters for the exemplar model (an attention weight

s for each cue, constrained to add to 1, and the sensitivity param-

eter h) using a nonlinear least squares fit, assuming the training set

as a knowledge base. We obtained parameter estimates for the cue

abstraction model in the binary condition with a nonlinear least

squares (iterative) procedure with the parameter values of a logis-

tic regression as the starting values. In the continuous task, we

calculated parameter values analytically by running a multiple

linear regression on participants’ responses. Table 4 reports the

average model fit by environment and age group. Individual model

fits can be found in Appendix B.

Participant classification. We classified participants by as-

signing each participant to the model that had the lower RMSD,

given the difference between the model fits was higher than one

standard error of the mean fit of the two models (cue abstraction

Table 4

Model Fits (Root-Mean-Square Deviation) by Age Group and Task Condition

Performance

Young adults Older adults

Binary (n ! 23) Continuous (n ! 25) Binary (n ! 25) Continuous (n ! 25)

M SD M SD M SD M SD

Exemplar-based model 0.19 0.13 1.22 0.27 0.30 0.12 1.59 0.50
Cue abstraction model 0.21 0.12 1.11 0.50 0.19 0.11 1.47 0.57
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model [CAM] and exemplar-based model [EBM]) in each condi-

tion (binary vs. continuous). We introduced this threshold because

in some cases, both models fit a participant about equally well (cf.

von Helversen et al., 2010). We excluded those participants that

could not be unambiguously classified from further analyses. In

the continuous condition, four young adults and seven older adults

were excluded. In the binary condition, two young adults and four

older adults were excluded (for individual classifications, see

Appendix B). The proportions of participants classified as EBM

and CAM users are presented in Figure 1.

We conducted a logistic regression with participant classifica-

tion (EBM vs. CAM) as the dependent variable, and age group,

task condition (continuous vs. binary), and their interaction as

independent variables, Nagelkerke’s R2!.17, p ! .01. The logistic

regression revealed an interaction between age group and condi-

tion, exp(B) ! .12, p ! .04, but no effect of age group, exp(B) !

.85, p ! .80, or condition, exp(B) ! 2.17, p ! .22. As can be seen

in Figure 1, young and older adults seem to have relied to a similar

extent on cue abstraction processes in the continuous condition. How-

ever, in the binary condition, older adults preferred cue abstraction

processes to a larger extent than young adults did. We also conducted

the same analysis including performance in the last training block as

an independent variable to test whether training performance had a

significant impact on strategy choice, but performance in the last

training block was not significantly associated with strategy choice,

exp(B) ! .99, p ! .97. In sum, while young adults were more likely

to rely on similarity-based processes in the categorization relative to

the multiple-cue judgment task, the majority of older adults relied on

rule-based inference processes when making both categorization and

multiple-cue judgments.

Participant classification and judgment performance. The

test phase included judgments about “old” characters presented at

training and “new” characters that had not yet been presented (see

Table 2). In the following, we focus on new characters because the

CAM and EBM differ more markedly for new characters (see

Appendix B; Juslin et al., 2003; von Helversen et al., 2010). Our

results suggest that older participants performed overall worse

relative to younger adults (see Figure 2). We conducted ANOVAs

with judgment performance for new characters as dependent vari-

able and age group (young, older) and participant classification

(EBM, CAM) as independent variables. In a second step, we also

included performance in the last training block as an independent

variable with the goal of assessing whether potential age differ-

ences at test may be due to individual differences in learning.

In the continuous condition, we found an effect of age group,

F(1, 35) ! 9.23, p ! .004, %p
2 ! .21, and model, F(1, 35) ! 5.17,

p ! .03, %p
2 ! .13, but not an age group by model interaction, F(1,

35) ! 0.84, p ! .37, %p
2 ! .02. We further assessed age differences

in performance only for those participants classified as CAM (the

mode for both young and older adults) and found a significant

effect of age group, F(1, 21) ! 8.90, p ! .007, %p
2 ! .30.

Consequently, these results suggest that age-related differences in

judgment performance cannot simply be attributed to model se-

lection but that older adults had more difficulties applying cue

abstraction processes. We further controlled for performance in the

last training block and found that age was no longer significant,

F(1, 20) ! 2.20, p ! .15, %p
2 ! .10, suggesting that age differences

in applying the CAM model were related to individual differences

in learning.

In the binary condition, we found no main effects of age group,

F(1, 38) ! 0.32, p ! .57, %p
2 " .01, nor model, F(1, 38) ! 0.16,

p ! .91, %p
2 " .01, but an age group by model interaction emerged,

F(1, 38) ! 8.74, p ! .005, %p
2 ! .19. Note, however, that only

three older adults were classified as using the exemplar model in

the binary condition. Consequently, we further assessed age dif-

ferences in performance only for those participants classified as

CAM (the mode for older adults) and found a significant effect of

age, F(1, 24) ! 4.56, p ! .04, %p
2 ! .16, which remained signif-

icant after controlling for performance in the last training block,

F(1, 23) ! 8.76, p ! .007, %p
2 ! .28. These results show that older

CAM users in the binary condition made poorer judgments than

young CAM users, even when the effect of training performance

was controlled.
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Figure 1. Percentage of participants best described by the exemplar-

based model (EBM; white) and the cue abstraction model (CAM; black) as

a function of task conditions (continuous, binary).
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Figure 2. Root-mean-square deviation (RMSD) for new test items for

young and older adults classified as using an exemplar-based model (EBM;

white) or cue abstraction model (CAM; black) as a function of task

conditions (continuous, binary). Circle diameters are proportional to the

percentage of participants classified as CAM or EBM (see also Figure 1).

Error bars represent standard errors of the mean.

6



Cognitive Abilities and Choice of Cognitive Process

One of our goals in the study was to determine whether indi-

vidual differences in cognitive ability played a role in participants’

preferences for rule-based versus similarity-based inference pro-

cesses. For this purpose, we conducted standardized measures of

cognitive ability (processing speed, cognitive reflection) as well as

task-related recognition test. We measured recognition memory for

the task stimuli by asking participants at each object presentation

during the test phase whether they recognized the object from the

training phase. We calculated hit and false alarm rates and the

respective signal detection parameters, discriminability (d#), and

bias ($) for each participant (see Appendix C). As can be seen in

Table 1, young adults scored higher than older adults on the

cognitive reflection and processing speed measures. Also, older

adults had more difficulties discriminating between new and old

items in the recognition test relative to young adults. Could diffi-

culties in discriminating new and old characters or other cognitive

limitations be responsible for reliance on rule- versus similarity-

based processes?

We assessed the link among processing speed, cognitive

reflection, recognition memory (d#), and participants’ classifi-

cation using logistic regression. To avoid biasing our results

due to mean age group differences in the cognitive ability

measures (cf. Hofer & Sliwinski, 2001), we conducted analyses

separately for each age group. In the following analyses, we

collapsed across conditions so as to increase power but included

a dummy variable to control for task effects (similar results are

obtained when task conditions are analyzed separately). We

found no link between individual differences in the cognitive

measures and strategy choice for young adults, d#, exp(B) !.26,

p ! .52; cognitive reflection, exp(B) ! 1.48, p ! .23; process-

ing speed, exp(B) ! 1.01, p ! .67; or task condition, exp(B) !

1.97, p ! .32. We also found no significant link between

individual differences in cognitive measures and strategy

choice for the sample of older adults, d#, exp(B) !.30, p ! .12;

cognitive reflection, exp(B) !1.03, p ! .95; processing speed,

exp(B) ! .94, p ! .18; or task condition, exp(B) ! 0.97, p !

.17. Future studies with larger sample sizes and a more com-

prehensive battery of tests may be needed to better determine

the relation of individual differences in cognitive abilities to the

selection of rule-based versus similarity-based inference pro-

cesses. Overall, the results do not provide support for the idea

that older participants relied on cue abstraction processes due to

limitations in recognition memory or other cognitive abilities.

Discussion

People often need to infer unknown properties of objects from

observable ones, just like detectives must infer guilt from observ-

able clues and behavior. We asked whether older adults were more

likely to rely on rule-based or similarity-based processes when

making inferences. Specifically, young and older adults made

inferences in a task that can either be considered a multiple-cue

judgment task or a categorization task depending on whether

the criterion is continuous or binary, respectively. In the multiple-

cue judgment task, in which participants had to estimate a contin-

uous criterion, the majority of both young and older adults were

best fit by a rule-based model that assumes that participants

identify the predictive value of each relevant cue and linearly

integrate cues to arrive at judgments (CAM). More remarkably, in

the categorization task, the majority of older adults were best fit by

a CAM, while the majority of younger adults were best fit by an

EBM that assumes that participants make judgments on the basis

of similarity between the item to be categorized and retrieved

exemplars from memory. In sum, while young adults relied on

different processes as a function of the task, older adults preferred

cue abstraction processes in both multiple-cue judgment and cat-

egorization tasks.

Overall, the finding that older adults relied more on rule-

based processes relative to young adults in at least one task

condition undermines the suggestion that age-related deficits in

cognitive abilities, such as working memory or processing

speed, foster implicit similarity-based inference. In turn, the

idea that older adults rely more on rule-based processes because

of memory limitations (Filoteo & Maddox, 2004) also receives

limited support: Older adults tended to rely on rule-based

strategies, but we did not find a link between individual differ-

ences in cognitive ability, including recognition memory, and

participants’ reliance on rule-based versus similarity-based pro-

cesses.

Our findings raise the possibility that older adults’ increased

reliance on cue abstraction processes relative to young adults was

not due to objective cognitive limitations. Previous work on strat-

egy selection and aging has found that subjective factors may play

an important role in strategy selection (Touron & Hertzog, 2004,

2009): Older adults’ are often reluctant to select strategies that rely

on memory due to lack of confidence in these abilities. Future

studies should evaluate the role that confidence in memory abili-

ties plays in individuals’ choosing to use specific inference strat-

egies, such as those that purportedly rely on memory (Juslin et al.,

2003). In sum, while our study is limited in its ability to assess the

specific mechanism underlying age differences in inference, one

promising avenue for future work is to study how meta-cognitive

factors, rather than objective cognitive limitations, impact strategy

choice in the inference domain.

Older adults had more difficulties reaching the arbitrary learning

criteria in the continuous relative to the binary task, while young

adults were equally likely to reach criterion in the two tasks. This

may indicate that, at least for older adults, the continuous

(multiple-cue judgment) task is more demanding than the binary

(categorization) task. Nonetheless, the differences between young

and older adults’ choice of rule-based strategies were only evident

in the latter (categorization task). Consequently, one may infer that

the age differences in performance in the continuous (multiple-cue

judgment) task are not simply due to reliance on different judg-

ment processes. Also, even when only those participants who

relied on the rule-based strategy are considered, older adults

showed poorer judgment performance in both the multiple-cue

judgment and categorization tasks relative to their young counter-

parts. These results are congruent with the view that aging leads to

deficits in strategy execution (e.g., Dunlosky & Hertzog, 1998).

Nevertheless, because these age differences were no longer sig-

nificant or reduced when controlling for performance in the last

block of training, it is reasonable to assume that age differences at

test were at least partly related to learning deficits, for example,

learning cue polarity (the direction of the correlation between a cue

and the criterion) and cue weights (the strength of the correlation

7



between a cue and the criterion). Such findings match previous

ones showing that aging is associated with deficits in learning the

value of cues (e.g., Chasseigne et al., 2004), decision options

(Wood, Busemeyer, Coling, Cox, & Davis, 2005), and strategies

(Mata et al., 2010).

Our study did not allow us to test whether participants were

adaptive in the sense of selecting the best performing strategy

given their cognitive abilities. For this purpose, studies could rely

on a “no-choice-of-strategy” procedure (Lemaire & Siegler, 1995)

in which experimenters instruct participants to apply cue abstrac-

tion and exemplar-based processes on specific trials. The applica-

tion efficacy with which participants use each strategy could then

be linked to participants’ choice of cognitive process in an inde-

pendent task. While it is thought that older adults often adopt such

adaptive and compensatory behaviors (Baltes, 1997), a thorough

test of this premise in the inference domain is still lacking. In

addition, it could be informative to test whether age differences in

strategy choice can also be found in other domains in which no age

differences or even superior performance for older adults have

been reported, such as social and consumer judgments in which

older adults have significant experience (e.g., Blanchard-Fields,

2007; Hess, Leclerc, Swaim, & Weatherbee, 2009).

Older adults’ performance deficits in our task make clear the

importance of understanding age differences in inference tasks.

But what task conditions can favor successful cue abstraction

learning and application by older adults? Research shows that

providing information about task structure or context can provide

a helpful boost to performance (e.g., Heit, 1997), for example,

because context and causal information make clear the relation

between cues and criterion (Newell, Weston, Tunney, and Shanks,

2009). Future work should evaluate how providing causal or

contextual information to participants by allowing participants to

rely on previous knowledge or providing real-world scenarios can

boost older adults’ performance in these inference tasks.

Finally, the behavior of older adults in our study contrasts

starkly with that of 9- to 11-year-olds in a similar experiment (von

Helversen et al., 2010). Older adults in our study relied on rule-

based processes regardless of task condition, while most children

in von Helversen et al. relied on similarity-based strategies in both

multiple-cue judgment and categorization tasks. Taken together,

the results of the two studies emphasize the importance of going

beyond performance measures to understand life span differences

in inference behavior: A comparison of children and older adults’

performance, for example, in terms of monetary payoff relative to

that of young adults, would suggest that the children and older

adults are equivalent in their categorization and judgment behav-

ior. Only by relying on the computational modeling of partici-

pants’ inferences were we able to distinguish between rule- and

similarity-based processes and identify differences between chil-

dren and older adults. Future studies will need to investigate how

meta-cognitive considerations as well as objective cognitive lim-

itations contribute to such stark discontinuity between the two ends

of the life span.

In conclusion, the idea that different cognitive processes can

underlie judgments is crucial to understanding age differences in

inference processes. Our results provide evidence that preferences

for rule-based processes change across the life span and make clear

the need to understand how to foster successful selection and

application of rule- and similarity-based inference processes by

older adults.
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Appendix A

Mathematical Models

Exemplar Model

The exemplar model assumes that the judgment is the average of

the criterion values c, weighted by their similarity to the probe.

ŷp !

!
i!1

I

S' p, i( · xi

!
i!1

I

S' p, i(

(A1)

where ŷp is the estimated criterion value for the probe p, S is the

similarity of the probe to the stored exemplars, xi is the criterion

value of the exemplar i, and I is the number of stored exemplars in

memory. Equation A1 can be applied in the two task conditions

(binary vs. continuous), with only the criterion for the items

varying as a function of condition, specifically, being either binary

(0 or 1) or continuous (from 10 to 20). The similarity S between the

stored exemplar and the probe is calculated by the similarity rule

of the generalized context model (GCM; Nosofsky, 1984):

The similarity S(p, i) between exemplars is found by transform-

ing the distance between them. The distance between a probe p and

an exemplar i is

dpi ! h"!
j!1

J

Sj# cpj # cij# $ , (A2)

where cpj and cij, respectively, are the cue values of the probe p and

an exemplar i on cue dimension j, h is a sensitivity parameter

(changed from the usual c to avoid confusion with the cue values

c) that reflects overall discriminability in the psychological space,

and the parameters sj are the attention weights associated with cue

dimension j. Attention weights vary between 0 and 1 and are

constrained to sum to 1. The similarity S(p, i) between a probe p

and an exemplar i is a nonlinearly decreasing function of their

distance (dpi),

S' p, i( ! e)dpi (A3)

Cue Abstraction Model

The cue abstraction model assumes that the judgment ŷ of an

object p is the sum of the weighted cue values c1 . . . cj. plus an

intercept k,

ŷp ! k " !
1!J

J

wj · cj, (A4)

where the intercept k and the weights w are free parameters. If k !

10, w1 ! 4, w2 ! 3, w3 ! 2, and w4 ! 1, Equation A4 is identical

to the function determining the continuous criterion, and the model

produces perfect judgments.

In the binary task, we assume a decision rule assuming that all

objects p with the criterion C " 15 are classified into Group A, all

objects with C * 15 are classified into Group B, and objects with

C ! 15 have probability of .5 in being classified into Group A or

Group B. The proportion of classifications into B, p(b !1), was

modeled by a smoother logistic function to take into account

random error (c.f. Juslin et al, 2003):

p̂'b̂ ! 1( !

ek + ¥Wi · ci

1 # ek ! ¥Wi · ci
, (A5)

where Wi are the cue weights and k the intercept.

Model Predictions

We created 16 items (stimuli) using Equation 1 but excluded six

from the training set so that participants would only face a subset

of items during training (Table 2). Excluding items from the

training set ensures that the CAM and EBM can, in principle, make

different predictions for new test items (see Juslin et al., 2003, for

a full rationale). When all items are learned during the training

phase, the models cannot make different predictions; however,

when the training set is constrained, the model predictions can

diverge: Whereas the cue abstraction model makes judgments

according to the linear additive rule, the exemplar model is sen-

sitive to similarity between new items and the items stored in

memory. Consequently, EBM’s predictions for new items are

biased by similarity between these and the items stored in memory,

that is, the items in the training set.

Figure A1 provides an illustration of how the exemplar model’s

predictions are influenced by using a constrained training set. To

obtain these predictions, we fitted the EBM and CAM to the

training set by minimizing the RMSD between the model predic-

tion and the actual criteria as a goodness-of-fit measure. We then

used the estimated parameter values to make predictions for the

full test set. We estimated four free parameters for the exemplar

model (an attention weight s for each cue, constrained to add to 1,

and the sensitivity parameter h) using a nonlinear least squares fit,

assuming the training set as a knowledge base. We obtained

parameter estimates for the cue abstraction model in the binary

condition with a nonlinear least squares (iterative) procedure with

the parameter values of a logistic regression as the starting values.

Parameters referring to parameter weights were bound between

)10 and 10 to match the fitting procedure used for individual

participants (see main text). In the continuous task, we calculated
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parameter values analytically by running a multiple linear regres-

sion on participants’ responses. The parameter values for the

regression model in the continuous condition were w1! 4, w2 ! 3,

w3 ! 2, w4 ! 1, k ! 10, and in the binary condition, w1! 6.79,

w2 ! 6.42, w3 ! 6.78, w4 ! 0.0001, k ! )10. The estimated

parameter values for the exemplar model in the continuous con-

dition were s1!.25, s2 ! .25, s3 !.25, s4 !.25, h ! 41.52, and in

the binary condition, s1!.28, s2 ! .28, s3 !.30, s4 !.14, h ! 8.27.

As can be seen in Figure A1A, the CAM is able to perfectly

estimate the criteria for all test items because the estimation of cue

weights and intercept matches the structure of the environment

(Equations 1 and A4). In turn, as can be seen in Figure A1B, the

exemplar models’ predictions diverge for some items that were not

experienced before. For example, one extreme item with criterion

10 is omitted in the constrained training set (cue values: 0, 0, 0, 0:

criterion ! 10 or 0 for continuous and binary conditions, respec-

tively). When presented with the extreme option, an addition of the

cue values as implied by cue abstraction will produce the most

extreme response, 10. Moreover, the estimate for the most extreme

item is more extreme than the estimate for the second-to-most

extreme item (with a criterion of 11). In other words, the estimate

for the item (0, 0, 0, 0) is lower than for item (0, 0, 0, 1). The

exemplar model, on the other hand, implies the opposite pattern.

On average, the response proportion for the extreme item (0, 0, 0,

0) will be higher than for item (0, 0, 0, 1) The estimate for (0, 0,

0, 1) is determined almost exclusively by retrieval of the identical

exemplar learned during training (criterion ! 11), and other ex-

emplars receive marginal impact (i.e., because of the multiplicative

similarity rule in Equation A2). For the new item (0, 0, 0, 0), the

estimate cannot be dominated by the identical exemplar because

this has not been learned during training. Consequently, other

exemplars in memory, all with criteria larger than 10, bias its

estimation. This is a well-known difference between the cue ab-

straction and exemplar models: The rules of the CAM afford

extrapolation, while an EBM is unable to extrapolate (DeLosh,

Busemeyer, & McDaniel, 1997; Erickson & Kruschke, 1998;

Juslin et al., 2003). Figure A1C shows a good categorization

performance by the regression model with the exception of the

items with a criterion of 15. In turn, for the exemplar model, and

as can be seen in Figure A1D, the estimates for some new items,

in particular, those with criterion values 17 and 18, are influenced

by the similarity to poor items (criterion ! 0). In sum, these results

suggest that the two models are able to make different predictions

given the constrained training set we employed.

Appendix B

Model Fitting and Participant Classification

Individual Model Fits and Participant Classification

We fitted the EBM and CAM to each individual participant and

classified the participant accordingly. We classified participants by

assigning each participant to the model that had the lower RMSD,

given the difference between the model fits was higher than one

standard error of the mean fit of the two models (CAM, EBM) in

each condition (binary vs. continuous). Table B1 presents the

model fits and respective classification for each individual partic-

ipant.

Average Judgments

We also explored whether average estimates for those partici-

pants classified as either CAM or EBM users matched the quali-

tative expectations derived from the formal models. For this pur-

pose, we compared model predictions assuming perfect learning of
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Figure A1. Model predictions in the continuous and the binary condition.

CAM ! cue abstraction model; EBM ! exemplar-based model.
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Table B1

Model Fits for Individual Participants

Task condition/participant

Young adults Older adults

EBM CAM Classification EBM CAM Classification

Continuous
1 1.10 0.23 CAMa 1.24 1.30 UN
2 1.26 1.83 EBM 1.19 1.40 EBM
3 1.23 1.00 CAMa 1.85 1.97 EBM
4 1.21 0.38 CAMa 1.80 1.85 UN
5 1.07 1.24 EBM 1.05 1.44 EBMa

6 0.87 0.90 UNa 1.96 0.53 CAM
7 1.50 1.50 UNa 1.90 2.26 EBM
8 1.01 1.36 EBMa 2.41 0.98 CAM
9 1.52 1.59 UN 1.04 1.77 EBMa

10 0.93 1.41 EBMa 2.25 2.24 UN
11 1.08 1.80 EBMa 1.80 2.28 EBM
12 0.92 1.01 EBMa 1.49 1.33 CAMa

13 1.31 1.56 EBMa 1.78 1.77 UN
14 1.28 1.06 CAMa 1.41 1.41 UNa

15 1.31 1.23 CAMa 1.14 1.41 EBMa

16 1.65 1.98 EBMa 1.38 1.38 UN
17 1.05 1.00 UNa 0.74 0.49 CAM
18 1.30 0.64 CAMa 1.66 0.73 CAM
19 0.96 0.73 CAMa 2.66 2.44 CAM
20 1.10 0.53 CAMa 1.13 1.03 CAM
21 1.76 1.39 CAM 2.48 2.38 CAMa

22 1.81 0.97 CAMa 1.47 1.32 CAMa

23 0.95 1.47 EBMa 1.46 1.41 UN
24 0.97 0.09 CAMa 1.05 0.92 CAMa

25 1.42 0.90 CAMa 1.51 0.78 CAM
Binary

1 0.16 0.24 EBMa 0.31 0.33 UN
2 0.00 0.04 EBMa 0.40 0.14 CAMa

3 0.32 0.24 CAMa 0.43 0.21 CAM
4 0.26 0.01 CAMa 0.43 0.18 CAM
5 0.09 0.19 EBMa 0.44 0.32 CAMa

6 0.24 0.25 UNa 0.25 0.30 EBMa

7 0.15 0.26 EBMa 0.43 0.30 CAMa

8 0.43 0.51 EBMa 0.21 0.23 UNa

9 0.06 0.38 EBMa 0.31 0.04 CAMa

10 0.14 0.20 EBMa 0.36 0.29 CAMa

11 0.43 0.32 CAMa 0.25 0.15 CAMa

12 0.22 0.11 CAMa 0.36 0.04 CAMa

13 0.00 0.04 EBMa 0.18 0.20 UN
14 0.00 0.18 EBMa 0.38 0.22 CAM
15 0.25 0.18 CAMa 0.16 0.01 CAMa

16 0.24 0.16 CAMa 0.43 0.22 CAM
17 0.42 0.24 CAMa 0.21 0.27 EBMa

18 0.11 0.15 EBMa 0.00 0.04 EBMa

19 0.21 0.41 EBMa 0.38 0.07 CAMa

20 0.21 0.21 UNa 0.41 0.40 UN
21 0.14 0.19 EBMa 0.15 0.12 CAMa

22 0.32 0.11 CAMa 0.34 0.11 CAMa

23 0.07 0.18 EBMa 0.29 0.20 CAMa

24 0.21 0.14 CAM
25 0.21 0.11 CAMa

Note. CAM ! cue abstraction model; EBM ! exemplar-based model; UN ! unclassified.
a Learning criterion reached.
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the training set (see Appendix A) to model judgments obtained using

the parameters estimated from the responses of cue abstraction and

exemplar users. A good qualitative match between model predictions

using optimal weights and model judgments using fitted parameter

values would provide additional support for our participant classifi-

cation. To obtain parameter estimates for exemplar and cue abstrac-

tion users, we averaged the estimates or judgments of those classified

as EBM or CAM users for each item and fitted the models to the

averaged data. In the continuous condition, the parameter estimates

for participants classified as EBM users were s1!.30, s2 ! .25, s3

!.26, s4 !.19, and h ! 5.16, and for those classified as CAM users

were w1! 2.76, w2 ! 1.32, w3 !0.94, w4 ! 1.05, and k ! 12.25. In

the binary condition, the parameter estimates for participants’ classi-

fied as EBM users were s1!.28, s2 ! 40, s3 !.26, s4 !.06, and h !

8.55, and for those classified as CAM users were w1!2.14, w2 !

0.43, w3 !1.92, w4 ! 0.94, and k ! )2.78.

The top panels in Figure B1 present model predictions as

computed in Appendix A; The bottom panels in Figure B1 present

model judgments using the parameter values estimated from par-

ticipants’ average data. Overall, and as expected, the judgments

based on participants’ data qualitatively match the models’ pre-

dictions. For example, in the continuous condition, the judgments

are less extreme than predicted by the models, a common pattern

in estimation tasks and one that suggests that there may be noise in

the execution of the cue abstraction and exemplar processes (e.g.,

Juslin et al., 2003). Nevertheless, the judgments based on EBM

users’ data do not show evidence of extrapolation for the extreme

item (criterion ! 10) while those of CAM users do. In the binary

condition, judgments based on EBM users’ data show the pre-

dicted pattern of generally good categorization performance but

difficulties regarding items with a criterion of 17 and 18. In turn,

the pattern for CAM users seems qualitatively different. Note that

while the pattern for CAM user does not strictly match the step

function predicted by error-free model, this is to be expected from

a noisy execution of the cue abstraction process, which can be

captured by the regression model by assigning nonoptimal values

to the cue weightings. In sum, these results provide support for

both our classification procedure and our approach of conducting

analyses on new items for which the two models make more

distinct predictions.
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Figure B1. Top panels: Model judgments using optimal parameter values. Bottom panels: Model judgments

using parameter estimates obtained from fitting participants’ judgments. CAM ! cue abstraction model; EBM !

exemplar-based model.
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Appendix C

Signal Detection Analysis

We calculated two signal detection theory parameters, discrim-

inability (d#) and bias ($), on the basis of each participant’s hit (H)

and false alarm (FA) rates (cf. Macmillan & Creelman, 2005).

When hits or false alarm rates were zero, 0.5 was added to the total

number of hits or false alarms, whereas 0.5 was subtracted from

the total number of hits or false alarms, when hit rates or false

alarm rates amounted to 1. Discriminability d# was calculated for

each participant as d# ! z(H) ) z(FA). The function z( ) trans-

forms probabilities into real values that are normally distributed

with mean , ! 0 and standard deviation - ! 1. Bias $ was

calculated as exp(d# " c) with c being the relative criterion calcu-

lated as c ! )1⁄2 " [z(FA) + z(H)]. $ reflects an observer’s bias to

say “yes” or “no” with the unbiased observer having a value

around 1.0. As the bias to say yes increases, $ approaches 0. As the

bias to say no increases, $ increases over 1.0 on an open-ended

scale.
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